Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(4): 778-794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985387

RESUMO

We have studied the reduction reactions of two cytosolic human peroxiredoxins (Prx) in their disulfide form by three thioredoxins (Trx; two human and one bacterial), with the aim of better understanding the rate and mechanism of those reactions, and their relevance in the context of the catalytic cycle of Prx. We have developed a new methodology based on stopped-flow and intrinsic fluorescence to study the bimolecular reactions, and found rate constants in the range of 105 -106 m-1 s-1 in all cases, showing that there is no marked kinetic preference for the expected Trx partner. By combining experimental findings and molecular dynamics studies, we found that the reactivity of the nucleophilic cysteine (CN ) in the Trx is greatly affected by the formation of the Prx-Trx complex. The protein-protein interaction forces the CN thiolate into an unfavorable hydrophobic microenvironment that reduces its hydration and results in a remarkable acceleration of the thiol-disulfide exchange reactions by more than three orders of magnitude and also produces a measurable shift in the pKa of the CN . This mechanism of activation of the thiol disulfide exchange may help understand the reduction of Prx by alternative reductants involved in redox signaling.


Assuntos
Peroxirredoxinas , Tiorredoxinas , Humanos , Tiorredoxinas/química , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Oxirredução , Compostos de Sulfidrila/química , Dissulfetos/química
2.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563654

RESUMO

Protein self-assembly is a common feature in biology and is often required for a myriad of fundamental processes, such as enzyme activity, signal transduction, and transport of solutes across membranes, among others. There are several techniques to find and assess homo-oligomer formation in proteins. Naturally, all these methods have their limitations, meaning that at least two or more different approaches are needed to characterize a case study. Herein, we present a new method to study protein associations using intrinsic fluorescence lifetime with phasors. In this case, the method is applied to determine the equilibrium dissociation constant (KD) of human peroxiredoxin 1 (hPrx1), an efficient cysteine-dependent peroxidase, that has a quaternary structure comprised of five head-to-tail homodimers non-covalently arranged in a decamer. The hPrx1 oligomeric state not only affects its activity but also its association with other proteins. The excited state lifetime of hPrx1 has distinct values at high and low concentrations, suggesting the presence of two different species. Phasor analysis of hPrx1 emission lifetime allowed for the identification and quantification of hPrx1 decamers, dimers, and their mixture at diverse protein concentrations. Using phasor algebra, we calculated the fraction of hPrx1 decamers at different concentrations and obtained KD (1.1 × 10-24 M4) and C0.5 (1.36 µM) values for the decamer-dimer equilibrium. The results were validated and compared with size exclusion chromatography. In addition, spectral phasors provided similar results despite the small differences in emission spectra as a function of hPrx1 concentration. The phasor approach was shown to be a highly sensitive and quantitative method to assess protein oligomerization and an attractive addition to the biophysicist's toolkit.


Assuntos
Peroxidase , Peroxirredoxinas , Cisteína , Fluorescência , Humanos , Peroxirredoxinas/metabolismo
3.
Free Radic Biol Med ; 141: 492-501, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323313

RESUMO

Peroxiredoxins (Prx) are enzymes that efficiently reduce hydroperoxides through active participation of cysteine residues (CP, CR). The first step in catalysis, the reduction of peroxide substrate, is fast, 107 - 108 M-1s-1 for human Prx2. In addition, the high intracellular concentration of Prx positions them not only as good antioxidants but also as central players in redox signaling pathways. These biological functions can be affected by post-translational modifications that could alter the peroxidase activity and/or interaction with other proteins. In particular, inactivation by hyperoxidation of CP, which occurs when a second molecule of peroxide reacts with the CP in the sulfenic acid form, modulates their participation in redox signaling pathways. The higher sensitivity to hyperoxidation of some Prx has been related to the presence of structural motifs that disfavor disulfide formation at the active site, making the CP sulfenic acid more available for hyperoxidation or interaction with a redox protein target. We previously reported that treatment of human Prx2 with peroxynitrite results in tyrosine nitration, a post-translational modification on non-catalytic residues, yielding a more active peroxidase with higher resistance to hyperoxidation. In this work, studies on various mutants of hPrx2 confirm that the presence of the tyrosyl side-chain of Y193, belonging to the C-terminal YF motif of eukaryotic Prx, is necessary to observe the increase in Prx2 resistance to hyperoxidation. Moreover, our results underline the critical role of this structural motif on the rate of disulfide formation that determines the differential participation of Prx in redox signaling pathways.


Assuntos
Oxirredução , Peroxirredoxinas/genética , Processamento de Proteína Pós-Traducional/genética , Tirosina/genética , Domínio Catalítico/genética , Cisteína/genética , Dissulfetos/química , Humanos , Mutação/genética , Nitratos/metabolismo , Peroxidase/genética , Peróxidos/metabolismo , Peroxirredoxinas/efeitos dos fármacos , Peroxirredoxinas/metabolismo , Ácido Peroxinitroso/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Protein Sci ; 28(1): 191-201, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30284335

RESUMO

Peroxiredoxins are thiol-dependent peroxidases that function in peroxide detoxification and H2 O2 induced signaling. Among the six isoforms expressed in humans, PRDX1 and PRDX2 share 97% sequence similarity, 77% sequence identity including the active site, subcellular localization (cytosolic) but they hold different biological functions albeit associated with their peroxidase activity. Using recombinant human PRDX1 and PRDX2, the kinetics of oxidation and hyperoxidation with H2 O2 and peroxynitrite were followed by intrinsic fluorescence. At pH 7.4, the peroxidatic cysteine of both isoforms reacts nearly tenfold faster with H2 O2 than with peroxynitrite, and both reactions are orders of magnitude faster than with most protein thiols. For both isoforms, the sulfenic acids formed are in turn oxidized by H2 O2 with rate constants of ca 2 × 103 M-1 s-1 and by peroxynitrous acid significantly faster. As previously observed, a crucial difference between PRDX1 and PRDX2 is on the resolution step of the catalytic cycle, the rate of disulfide formation (11 s-1 for PRDX1, 0.2 s-1 for PRDX2, independent of the oxidant) which correlates with their different sensitivity to hyperoxidation. This kinetic pause opens different pathways on redox signaling for these isoforms. The longer lifetime of PRDX2 sulfenic acid allows it to react with other protein thiols to translate the signal via an intermediate mixed disulfide (involving its peroxidatic cysteine), whereas PRDX1 continues the cycle forming disulfide involving its resolving cysteine to function as a redox relay. In addition, the presence of C83 on PRDX1 imparts a difference on peroxidase activity upon peroxynitrite exposure that needs further study.


Assuntos
Peróxido de Hidrogênio/química , Peroxirredoxinas/química , Ácido Peroxinitroso/química , Humanos , Cinética , Oxirredução , Proteínas Recombinantes/química , Ácidos Sulfênicos/química
5.
Biochemistry ; 57(24): 3416-3424, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29553725

RESUMO

Two-cysteine peroxiredoxins (Prx) have a three-step catalytic cycle consisting of (1) reduction of peroxide and formation of sulfenic acid on the enzyme, (2) condensation of the sulfenic acid with a thiol to form disulfide, also known as resolution, and (3) reduction of the disulfide by a reductant protein. By following changes in protein fluorescence, we have studied the pH dependence of reaction 2 in human peroxiredoxins 1, 2, and 5 and in Salmonella typhimurium AhpC and obtained rate constants for the reaction and p Ka values of the thiol and sulfenic acid involved for each system. The observed reaction 2 rate constant spans 2 orders of magnitude, but in all cases, reaction 2 appears to be slow compared to the same reaction in small-molecule systems, making clear the rates are limited by conformational features of the proteins. For each Prx, reaction 2 will become rate-limiting at some critical steady-state concentration of H2O2 producing the accumulation of Prx as sulfenic acid. When this happens, an alternative and faster-resolving Prx (or other peroxidase) may take over the antioxidant role. The accumulation of sulfenic acid Prx at distinct concentrations of H2O2 is embedded in the kinetic limitations of the catalytic cycle and may constitute the basis of a H2O2-mediated redox signal transduction pathway requiring neither inactivation nor posttranslational modification. The differences in the rate constants of resolution among Prx coexisting in the same compartment may partially explain their complementation in antioxidant function and stepwise sensing of H2O2 concentration.


Assuntos
Cisteína/metabolismo , Dissulfetos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Cisteína/química , Dissulfetos/química , Fluorescência , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Peróxidos/química , Peroxirredoxinas/química , Salmonella typhimurium/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...